Related Posts Plugin for WordPress, Blogger...

Qualitative Treatment of Autonomous ODE

Leave a Comment

A differential equation is called autonomous if it has no independent term. Hence a first order general ode will look like

Qualitative Treatment of Autonomous ODE
STEP I: Find the critical points (solution of ). These are horizontal solution of the given ode.
horizontal solution of ODE
Since two solutions(called integral curve) can’t intersect, hence other solution will be in the region bounded by these horizontal solution.
STEP II: As we have partition the space with horizontal solution, now identify the region with and .
regions of ode
As we know that

Hence the solution will look like
plot of solution of autonomous ode


Now we will apply these concept to a question of CSIR-NET.

Question: Let satisfy the initial value problem
Then

  1. for some .
  2. for all .
  3. is strictly increasing in .
  4. is increasing in and decreasing in .

Answer: Here , so are two horizontal solution of the given ode

The required integral curve will pass through , which lies in region 2, so the solution is increasing and bounded by . Here 2nd and 4th option are correct.

Hence 2 and 4 are correct choices.

Problems on Permutation Group

Leave a Comment

Question: Let and be subgroup of , where denotes the identify element of . Then

  1. and are normal subgroup of
  2. is normal in and are normal in
  3. is normal in but not in
  4. is normal in but is not

Answer: Recall

Conjugation preserve disjoint cyclic structure in permutation group, , for all , the disjoint cyclic decomposition of and will be the same.

Since contain all element with disjoint cyclic decompositon of type , hence it will be normal in and it will be normal in .

is Abelian so all it’s subgroup will be normal. .

Hence 2 is correct option.


Question: Let denote the symmetric group on symbols. The group is isomorphic to which of the following groups?

  1. , the alternating group of order
  2. , the dihedral group of order

Answer: Note,

  • The direct sum of a group will be Abelian iff all it’s constituent groups will be Abelian.
  • The direct sum contains a normal subgroup isomorphic to each of it’s constituent group.

is a non-abelian group of order , hence it will be either or .
Also has a normal subgroup of order , since does not contain a normal subgroup of order , hence it has to be .

Hence, 4 is correct choice.


Question: Which of the following numbers can be orders of permutations of symbols such that does not fix any symbol?

Answer: The order of permutation is determined as follows

  • The order of a cylce is .
  • The order any permutation is lcm of each lenght of individual cycle in the disjoint cyclic decomposition.

If a permutation does not fix any element of set, then it’s disjoint cyclic decomposition will contain all the elements of the set. So here we have to partition , with cycle length(, as length cycle fixed the element inside it.) such that the lcm of it’s constituent will be given in the option.

Option 1: For example and , we can write a permutation consist of two disjoint cycle of lengths and .
Option 2: Similarly, and .
Option 3: Here, and .
Option 4: and .

Hence all are correct.


Question: Let and be permutation in , the group of permutations on six symbols. Which of the following statements are true?

  1. The subgroup and are isomorphic to each other.
  2. and are conjugate in .
  3. is trivial group.
  4. and commute.

Answer: Since , hence both will generate a group isomorphic to .
Both and has different disjoint cyclic structure, hence can’t be conjugate.
Also, will be trivial.

Any two permutation will commute if and only if their disjoint cyclic decomposition has no elements in common.

Hence, and will not-commute.

Hence 1 and 3 are correct choice.


Question: Given the permutation the matrix is defined to be the one whose th column is the th column of the identity matrix . Which of the following is correct?

Answer: Note,

There is a natural isomorphism between and set of all permutation matrices of dimension , given by the matrix whose th column is the th column of the identity matrix.

Then,

Also, ,

Hence , , .

Hence 3 is correct choice.

AP-TS SET 2014 MATHEMATICS SOLUTIONS

1 comment

AP-TS SET  2014 MATHEMATICS SOLUTIONS


PAPER-2 SOLUTIONS




Q 1


$S=\left\{ 1-\frac { { \left( -1 \right)  }^{ n } }{ n } \quad :\quad n=1,2,3,... \right\} \\ \quad =\left\{ 2,1-\frac { 1 }{ 2 } ,1+\frac { 1 }{ 3 } ,1-\frac { 1 }{ 4 } ,... \right\} \\ \alpha \quad =\quad inf\quad S\quad =\quad \frac { 1 }{ 2 } \\ \beta \quad =\quad sup\quad S\quad =\quad 2\\ \\ \therefore \quad \left( \alpha ,\beta  \right) \quad =\left( \frac { 1 }{ 2 } ,2 \right)$




Q 2

$Let\quad { x }_{ n }\rightarrow l\\ { x }_{ n+1 }\quad =\frac { 1 }{ 2 } \left( { x }_{ n }+\frac { a }{ { x }_{ n } }  \right) ;\quad n\ge 1.\\ \Rightarrow \quad l=\frac { 1 }{ 2 } \left( l+\frac { a }{ l }  \right) \\ \Rightarrow { l }^{ 2 }=a\quad \Rightarrow l\quad =\sqrt { a } \\ By\quad AM-GM\quad inequality,\\ { x }_{ n+1 }=\frac { 1 }{ 2 } \left( { x }_{ n }+\frac { a }{ { x }_{ n } }  \right) \quad \ge \quad \sqrt { { x }_{ n }.\frac { a }{ { x }_{ n } }  } =\sqrt { a } \quad \forall n\\ and\quad { x }_{ n }\rightarrow \sqrt { a } \\ \therefore \quad { x }_{ n }\quad is\quad dicreasing.\\$





Q 3

$f:{ R }\longrightarrow { R };f(x)=\begin{cases} 1 & \quad x\in { Q } \\ 0 & \quad x\in { Q^{ c } } \end{cases}\\ we\quad know\quad f\quad is\quad continuous\quad at\quad x\in { R }\\ \quad\quad\quad\quad\quad iff\quad { x }_{ n }\longrightarrow x\quad impies\quad that\quad f\left( { x }_{ n } \right) \longrightarrow f\left( x \right) .\\ let\quad x\in { Q },\quad then\quad \exists \quad ({ s }_{ n })\quad in\quad { Q }^{ c }\quad :\quad { s }_{ n }\longrightarrow x,\quad but\quad f\left( { s }_{ n } \right) =\quad 0\nrightarrow f\left( x \right) =1.\\ so\quad f\quad is\quad not\quad continuous\quad at\quad x\in { Q. }\\ similiarly\quad f\quad is\quad not\quad continuous\quad at\quad x\in { Q }^{ c }\quad as\quad \exists \quad { r }_{ n }\longrightarrow x\quad in\quad { Q }\\ but\quad f\left( { r }_{ n } \right) =1\nrightarrow f\left( x \right) =0.\\ threfore\quad set\quad of\quad continuity\quad points\quad is\quad empty.$




Q 4

$Given f:\mathbb{R}\longrightarrow\mathbb{R} \quad is\quad monotonically\quad decreasing\quad\\ \\ f\left(x\right)\leq f\left(0\right)=a \quad \forall x\in\mathbb{R} \\ \therefore f\left((0,\infty\right))\subseteq (-\infty,a)\\$




Q 5

$f:\left[ a,b \right] \longrightarrow \quad { R }.\quad Given\quad f\quad is\quad H\ddot { o } lder's\quad function\quad with\quad exponent\quad \delta \quad >0.\\ \quad \quad \left| f\left( x \right) -f\left( y \right)  \right| <{ \left| x-y \right|  }^{ 1+\delta  },\quad \forall \quad x,y\in \left[ a,b \right] \\ \Rightarrow \frac { \left| f\left( x \right) -f\left( y \right)  \right|  }{ \left| x-y \right|  } <\quad \left| x-y \right| ^{ \delta  }\\ \Rightarrow \quad \lim _{ y\rightarrow x }{ \frac { \left| f\left( x \right) -f\left( y \right)  \right|  }{ \left| x-y \right|  }  } <\quad \lim _{ y\rightarrow x }{ \left| x-y \right| ^{ \delta  } } \\ \Rightarrow \quad \left| f^{ ' }\left( x \right)  \right| =\quad 0\quad \forall x\in \left[ a,b \right] \\ \Leftrightarrow \quad f^{ ' }\left( x \right) =\quad 0\quad \quad \forall x\in \left[ a,b \right] \\ \Leftrightarrow \quad f\left( x \right) =\quad k\quad constant\quad \forall x\in \left[ a,b \right]$




Q 6

$\left( \begin{matrix} 1, & -2, & 5 \end{matrix} \right) =\quad -6\left( \begin{matrix} 1, & 1, & 1 \end{matrix} \right) +3\left( \begin{matrix} 1, & 2, & 3 \end{matrix} \right) +2\left( \begin{matrix} 2, & -1, & 1 \end{matrix} \right) \\ \therefore \quad \left( \begin{matrix} \lambda _{ 1 }, & -\lambda _{ 2 }, & \lambda _{ 3 } \end{matrix} \right) =\left( \begin{matrix} -6 & 3 & 2 \end{matrix} \right).$




Q 7

${ B }=\left\{ \alpha _{ 1 },\alpha _{ 2 },...,\alpha _{ n } \right\} \quad is\quad a\quad basis\quad for\quad { V }\quad a\quad vector\quad space.\\ i.e.\quad { B }\quad is\quad a\quad maximal\quad linearly\quad independent\quad set\quad in\quad { V }\\ { S }=\left\{ \beta _{ 1 },\beta _{ 2 },...,\beta _{ m } \right\} \quad is\quad a\quad linearly\quad independent\quad set\quad in\quad { V }.\\ \therefore \quad m\le n.\\ \\ Note:\quad { S }{ \subseteq B }\quad need\quad not\quad be\quad true.$





Q 8

$T:{ { R } }^{ 3 }\longrightarrow { { R } }^{ 3 },\quad T(\begin{matrix} x, & y, & z \end{matrix})=(\begin{matrix} x+2y, & y-z & z+2z \end{matrix})\\ The\quad matrix\quad of\quad transformation\quad T\quad with\quad respect\quad to\quad standard\quad basis\quad is\\ \therefore \quad M=\begin{pmatrix} 1 & \quad 0 & \quad 1 \\ 2 & \quad 1 & \quad 0 \\ 0 & \quad -1 & \quad 2 \end{pmatrix}\\ by\quad row\quad operations\quad on\quad M\\ \begin{pmatrix} 1 & \quad 0 & \quad 1 \\ 2 & \quad 1 & \quad 0 \\ 0 & \quad -1 & \quad 2 \end{pmatrix}\xrightarrow { R_{ 2 }-2R_{ 1 } } \begin{pmatrix} 1 & \quad 0 & \quad \quad 1 \\ 0 & \quad 1 & \quad -2 \\ 0 & \quad -1 & \quad 2 \end{pmatrix}\xrightarrow { R_{ 3 }+R_{ 2 } } \begin{pmatrix} 1 & \quad \quad 0 & \quad \quad 1 \\ 0 & \quad 1 & \quad -2 \\ 0 & \quad 0 & \quad 0 \end{pmatrix}\\ \therefore \quad Rank\quad of\quad T\quad is\quad 2.$




Q 9

$T:{ { R } }^{ 3 }\longrightarrow { { R } }^{ 3 },\quad T(\begin{matrix} x, & y, & z \end{matrix})=\begin{pmatrix} x+y+z,&y+z,&z\end{pmatrix}.\\ Let \quad T\begin{pmatrix}x,&y,&z\end{pmatrix}=\begin{pmatrix}\alpha&\beta&\gamma\end{pmatrix}\\ \Rightarrow\begin{pmatrix}x+y+z,&y+z,&z\end{pmatrix}=\begin{pmatrix}\alpha&\beta&\gamma\end{pmatrix}\\ \Rightarrow z=\gamma;\quad y+z=\beta \quad \Rightarrow y=\beta-\gamma;$

$\\x+y+z=\alpha \quad \Rightarrow x=\alpha-\beta.\\$
$ T^{-1} \begin{pmatrix}\alpha,&\beta,&\gamma\end{pmatrix}$
$= \begin{pmatrix}\alpha-\beta,&\beta-\gamma,&\gamma\end{pmatrix}$




Q 10

$3t^2+4t+5=a+b(1+t)+c(1+t^2)$

       $          =(a+b+c)+bt+c+t^2;\\ $
       $        \Rightarrow \quad a+b+c=5,\quad b=4, \quad c=3,$
       $      \Rightarrow a=5-3-4=-2;\\$
         $\therefore$$\begin{pmatrix}a,&b,&c\end{pmatrix}=\begin{pmatrix}-2,&4,&3\end{pmatrix}$



Q 11

$Let\quad f(z)=zcosec(z)=\frac{z}{\sin(z)}.\\ $ 

Observe that f  is  analytic on

$\therefore \oint_Cf(z)dz=0\\ $




Q 12


The path $ C: |z-1|=1/2,\quad f(z)=\frac{1}{z(z-1)}.\\$ 
f  has  simple polesat $z=0$ and $ z=1\\$ 
The  $z=1$ lies  inside the closed path C. 
$\therefore \oint_Cf(z)dz=2\pi i*Res(f;z=1)\\ $
                          $=2\pi i*lim_{z\rightarrow 1}(z-1)f(z)\\$
                          $=2\pi i*lim_{z\rightarrow1}\frac{1}{z}=2\pi i$



Q 13

$f(z)=u+iv$  is  an  entire function with $u^2\leq v;\\$

$\Rightarrow f $ is bounded,
$\Rightarrow$ by Liovelli's theorem f  is constant.
Therefore $ f(2014)=f(0)=1.$



Q 16

Given the order of Group o(G)=143=11$\times$13;

$let\quad n_{13}=\quad number\quad of\quad Syllow-3\quad subgroups\quad in\quad G\\$
by Syllow's theorem
$n_{13}\mid11\quad \Rightarrow n_{13}\in \{1,11\},\\$
$n_{13}\equiv1mod(13)\quad \Rightarrow n_{13}=1.\\$
also we  know  that  unique is normal.
Therefore answer is 1.



Q 19

 Given  set $X=\{a,b,c,d,e\},A=\{a,c,d,e\}\subseteq X;\\$

topology on X is $T=\{\phi,X,\{a\},\{a,b\},\{a,b,e\},\{a,c,d\},\{a,b,c,d\}\}.\\$
Interior$(A^o)$ of A is the largest open in A.
Therefore $ A^o=\{a,c,d\}. $



Q 21

Given differential  is $(x^2-y^2)dx+2xydy=0;\\$

$\Rightarrow \frac{dy}{dx}=\frac{y^2-x^2}{2xy}=\frac{(\frac{y}{x})^2-1}{2(\frac{y}{x})}.\\$
$Let\quad y=zx\quad \Rightarrow \frac{dy}{dx}=z+x\frac{dz}{dx},\\$
$x\frac{dz}{dx}=\frac{z^2-1}{2z}-z=\frac{-1-z^2}{2z}\\$
$\Rightarrow \frac{1}{x}dx+\frac{2x}{1+z^2}dz=0\\$
$\Rightarrow\quad \log{x(z^2+1)}=C.\\$
$\Rightarrow\quad x(z^2+1)=C.\\$
Therefore  the general solution is $ x^2+y^2=Cx.$



Q 33

$P(X=5) =\quad P(X=5|Y=1)+P(X=5|Y=2)+P(X=5|Y=3) \\$

$\quad=\quad \frac{3}{20}+\frac{1}{5}+\frac{6}{20} \\$
$\quad = \quad \frac{13}{20}\\$


>$P(X=6) =\quad P(X=6|Y=1)+P(X=6|Y=2)+P(X=6|Y=3) \\$
$\quad=\quad \frac{2}{20}+\frac{1}{5}+\frac{1}{20} \\$
$\quad = \quad \frac{7}{20}\\$



Q 34

$\varphi_X(t)\quad = \quad E(e^{itX})\\$

$=\int_{-\infty}^{\infty} e^{itx}.f_X(x) dx\\$
=$\int_{-\infty}^{\infty}e^{itx}.\frac{1}{\sqrt{2}\pi}e^{-\frac{x^2}{2}}dx\\$ 
=$\frac{1}{\sqrt{2}\pi}\int_{-\infty}^{\infty}e^{itx-\frac{x^2}{2}}dx\\$
=$\frac{1}{\sqrt{2}\pi}\int_{-\infty}^{\infty}e^{\frac{(it)^2}{2}}e^{-\frac{(x-it)^2}{2}}dx\\$
$=e^{-\frac{t^2}{2}}$


Q 22 
Given  $y.f(x)=\tan{\left( \frac{\pi}{4}-\frac{1}{4}\cos^4{x}\right)} $; and 
$y\left(\frac{\pi}{2}\right)=1$
$\Rightarrow \quad y\left(\frac{\pi}{2}\right).f\left(\frac{\pi}{2}\right)=\tan{\left(\frac{\pi}{4}-\frac{1}{4}\cos^4{\frac{\pi}{2}}\right)}\\$

$\Rightarrow f\left(\frac{\pi}{2}\right)=\tan{\left(\frac{\pi}{4}-0\right)}=1.$

Problems on Euler's Theorem

Leave a Comment

Question: The number of elements in the set is

Answer: The question asks for .

And can be calculated using following formula.
1. .
2.
Or equivalently it can be calculated by single formula as follows

.

Hence 4 is correct choice.


Question: The last two digit of are

Answer: In this problem we have to use Euler’s Theorem

If , then = mod .

Here and .
Thus .

Hence 1 is correct option.


Question: If is a positive integer such that the sum of all positive integers satisfy and is equal to , then the number of summands, namely, is

Answer: The solution depends on the fact that relative prime number exist in pair.

Note that . Hence , , and are relatively prime together and their sum is equal to . Hence,

Here,

Hence 4 is correct choice.


Question: For a positive integer , let denote the number of integers such that and . Then which of the followong statements are necessarily true?

  1. divides for every positive integer .
  2. divides for all positive integers and .
  3. divides for all positive integers and such that
  4. divides for all positive integers and such that

Answer: More than one option can be true so we analyze each option separately.

Option 1: For any prime number we know that , hence false.

Option 2 and 3: For any positive integer we have

Also, note that , Using Euler’s theorem

Hence without any restriction on and regarding gcd.

Option 4: Take then . Here can’t divide , hence false.

Hence 2 and 3 are correct options.

Finding Last Digit

Leave a Comment

Question: The unit digit of is

Answer: This problem can be solved by basic idea of periodicity. Calculating few terms mod ,

We can see that the periodicity is .
Hence for .
Here .

Hence 3 is correct answer.


Question: The last digit of is

Answer: First note that (mod ).
Compute the periodicity of mod .

Again the period is .
Hence .

Hence 2 is the correct choice.

Problems on Counting

Leave a Comment

Question: The number of surjective maps from a set of elements to a set of elements is

Answer: Let be a elements set and be a elements set. Here we need to find number of surjective maps between onto . The idea is to partition the set into non-empty subset and assign each subset to a element of .
Different partition of set into non-empty subset is equal to , it can be represented by following figure(more generally it is given by Starling number of second kind)
partition
Thus we got a total of partition. Each partition corresponds to surjective maps. Hence total number of surjective maps .

Hence 1 is correct choice.


Question: An ice cream shop sells ice cream in five possible falvours: Vanilla, Chocolate, Strawberry, Mango and Pineapple. How many combinations of three scoop cones are possible? [Note: The repeatation of flavours allowed but the order in which the flavours are chosen does not matter.]

Answer: Let’s count the possibilities one by one
1. All 3 cones are of same flavor, we have possiblities.
2. All 3 cones are of different flavor, we have possibilities.
3. 2 are of same flavor and 1 of different flavor, then we have possibilities.
Hence total choice is .

Hence 3 is correct choice.


Question: We are given a class consisting of boys and girls. A committee that consists of a President, a Vice-President and a Secretary is to be chosen among the students of the class. Let denote the number of ways of choosing the committee in such a way that the committee has at least one boy and at least one girl. Let deonote the number of ways of choosing the committee in such a way that the number of girls is greater than or equal to that of the boys. Then

Answer: First we will choose a group of three people satisfying the condition and then multiply by , since the places are distinguishable.

Committee a: Choosing at least one boy and one girl = (Choosing 2 boy and 1 girl) + (Choosing 1 boy and 2 girl) = .
Hence no of ways choosing comittee a = .

Committee b: Choosing a committee in such a way that the number of girls is greater than or equal to that of the boys = (Choosing 2 girl and 1 boy)= .
Hence no of ways choosing comittee a = .

Hence 1 and 3 are correct options.

AP-TS SET 2014 MATHEMATICAL SCIENCE OFFICIAL KEY

Leave a Comment

                                         AP-TS SET 2014 MATHEMATICAL SCIENCE OFFICIAL KEY 


MATHEMATICS EXAM TIPS. Powered by Blogger.

Contact Form

Name

Email *

Message *