STATE ELIGIBILITY TEST FOR TELANGANA & ANDHRA PRADESH STATES
Subject: MATHEMATICAL SCIENCES
SYLLABUSPAPER-II & III
UNIT –1
Analysis: Elementary set theory, finite, countable and uncountable sets, Real number system
as a complete ordered field, Archimedean property, supremum, infimum.
Sequences and series, convergence, limsup, liminf. Bolzano Weierstrass theorem, Heine
Borel theorem.
Continuity, uniform continuity, differentiability, mean value theorem. Sequences and series
of functions, uniform convergence.
Riemann sums and Riemann integral, Improper Integrals.
Monotonic functions, types of discontinuity, functions of bounded variation, Lebesgue
measure, Lebesgue integral.
Functions of several variables, directional derivative, partial derivative, derivative as a
linear transformation, inverse and implicit function theorems.
Metric spaces, compactness, connectedness. Normed linear Spaces. Spaces of continuous
functions as examples.
Linear Algebra:
Vector spaces, subspaces, linear dependence, basis, dimension, algebra of
linear transformations.
Algebra of matrices, rank and determinant of matrices, linear equations.
Eigenvalues and eigenvectors, Cayley-Hamilton theorem.
Matrix representation of linear transformations. Change of basis, canonical forms, diagonal
forms, triangular forms, Jordan forms.
Inner product spaces, orthonormal basis.
Quadratic forms, reduction and classification of quadratic forms
UNIT –2
Complex Analysis:
Algebra of complex numbers, the complex plane, polynomials, power series, transcendental
functions such as exponential, trigonometric and hyperbolic functions.
Analytic functions, Cauchy-Riemann equations.
Contour integral, Cauchy’stheorem, Cauchy’sintegral formula, Liouville’stheorem,
Maximum modulus principle, Schwarz lemma, Open mapping theorem.
Taylor series, Laurent series, calculus of residues.
Conformal mappings, Mobius transformations.
Algebra:
Permutations, combinations,.pigeon-hole principle, inclusion-exclusion principle, derangements
Fundamental theorem of arithmetic, divisibility in Z, congruences, Chinese
Remainder Theorem, Euler’sØ- function, primitive roots.
Groups, subgroups, normal subgroups, quotient groups, homomorphisms, cyclic groups,
permutation groups, Cayley’stheorem, class equations, Sylow theorems.
Rings, ideals, prime and maximal ideals, quotient rings, unique factorization domain,
principal ideal domain, Euclidean domain.
Polynomial rings and irreducibility criteria.
Fields, finite fields, field extensions, Galois Theory.
Topology:
basis, dense sets, subspace and product topology, separation axioms,
connectedness and compactness.
UNIT –3
Ordinary Differential Equations (ODEs):
Existence and uniqueness of solutions of initial value problems for first order ordinary
differential equations, singular solutions of first order ODEs, system of first order ODEs.
General theory of homogenous and non-homogeneous linear ODEs, variation of parameters,
Sturm-Liouville boundary value problem, Green’sfunction.
Partial Differential Equations (PDEs):
Lagrange and Charpit methods for solving first order PDEs, Cauchy problem for first order
PDEs.
Classification of second order PDEs, General solution of higher order PDEs with constant
coefficients, Method of separation of variables for Laplace, Heat and Wave equations.
Numerical Analysis:
Numerical solutions of algebraic equations, Method of iteration and Newton-Raphson
method, Rate of convergence, Solution of systems of linear algebraic equations using Gauss
elimination and Gauss-Seidel methods, Finite differences, Lagrange, Hermite and spline
interpolation, Numerical differentiation and integration, Numerical solutions of ODEs using
Picard, Euler, modified Euler and Runge-Kutta methods.
Calculus of Variations:
Variation of a functional, Euler-Lagrange equation, Necessary and sufficient conditions for
extrema. Variational methods for boundary value problems in ordinary and partial
differential equations.
Linear Integral Equations:
Linear integral equation of the first and second kind of Fredholm and Volterra type, Solutions
with separable kernels. Characteristic numbers and eigenfunctions, resolvent kernel.
Classical Mechanics:
Generalized coordinates, Lagrange’sequations, Hamilton’scanonical equations, Hamilton’s
principle and principle of least action, Two-dimensional motion of rigid bodies, Euler’s
dynamical equations for the motion of a rigid body about an axis, theory of small oscillations.
UNIT –4
Descriptive statistics, exploratory data analysis
Sample space, discrete probability, independent events, Bayes theorem. Random variables
and distribution functions (univariate and multivariate); expectation and moments.
Independent random variables, marginal and conditional distributions. Characteristic
functions. Probability inequalities (Tchebyshef, Markov, Jensen). Modes of convergence,
weak and strong laws of large numbers, Central Limit theorems (i.i.d. case).
of n-step transition probabilities, stationary distribution, Poisson and birth-and-death
processes.
Standard discrete and continuous univariate distributions. sampling distributions, standard
errors and asymptotic distributions, distribution of order statistics and range.
Methods of estimation, properties of estimators, confidence intervals. Tests of hypotheses:
most powerful and uniformly most powerful tests, likelihood ratio tests. Analysis of discrete
data and chi-square test of goodness of fit. Large sample tests.
Simple nonparametric tests for one and two sample problems, rank correlation and test
for independence. Elementary Bayesian inference.
Gauss-Markov models, estimability of parameters, best linear unbiased estimators,
confidence intervals, tests for linear hypotheses. Analysis of variance and covariance. Fixed,
random and mixed effects models. Simple and multiple linear regression. Elementary
regression diagnostics.
Logistic regression.
Multivariate normal distribution, Wishart distribution and their properties. Distribution of
quadratic forms. Inference for parameters, partial and multiple correlation coefficients and
related tests. Data reduction techniques: Principle component analysis, Discriminant
analysis, Cluster analysis, Canonical correlation.
Simple random sampling, stratified sampling and systematic sampling. Probability
proportional to size sampling. Ratio and regression methods. Completely randomized
designs, randomized block designs and Latin-square designs. Connectedness and
orthogonality of block designs, BIBD. 2K factorial experiments: confounding and
construction.
Hazard function and failure rates, censoring and life testing, series and parallel systems.
Linear programming problem, simplex methods, duality. Elementary queuing and inventory
models. Steady-state solutions of Markovian queuing models: M/M/1, M/M/1 with limited
waiting space, M/M/C, M/M/C with limited waiting space, M/G/1.
0 comments:
Post a Comment